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Abstract. Diffusion network inference aims to reveal the message prop-
agation process among users and has attracted many research interests
due to the fundamental role it plays in some real applications, such as
rumor-spread forecasting and epidemic controlling. Most existing meth-
ods tackle the task with exact node infection time. However, collect-
ing infection time information is time-consuming and labor-intensive,
especially when information flows are huge and complex. To combat the
problem, we propose a new diffusion network inference algorithm that
only relies on infection states. The proposed method first encodes sev-
eral observation states into a node infection matrix and then obtains the
node embedding via the variational autoencoder(VAE). Nodes with the
least Wasserstein distance of embeddings are predicted for existing prop-
agation edges. Meanwhile, to reduce the complexity, a novel clustering-
based filtering strategy is designed for selecting latent propagation edges.
Extensive experiments show that the proposed model outperforms the
state-of-the-art infection time independent models while demonstrating
comparable performance over infection time based models.

Keywords: Diffusion Network Inference · Variational Autoencoder ·
Wasserstein Distance.

1 Introduction

The topology of a diffusion network reveals how information is propagated among
users, intuitively illustrating potential information propagation paths. Promot-
ing and preventing future diffusion on the network are of great importance[23].
Generally, observing the influence relationship between users in the real scenar-
ios is difficult, thus researchers try to recover the relations with the historical
propagation[9], which is known as the diffusion network inference task.

According to whether the node infection time is used or not, most of the ex-
isting diffusion network inference methods can be divided into two categories: the
infection time dependent and infection time independent algorithms[11]. The in-
fection time dependent algorithm mostly assume that previously infected nodes
are potential parents of subsequently infected nodes. It infers the influence re-
lationship between nodes by constructing and maximizing different likelihood
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functions based on the exact infection time[15]. However, in some realistic sce-
narios, monitoring and recording the node infection time is labor demanding
and time consuming, limiting the performance and application of the algorithm.
Therefore, works on reconstructing the diffusion network structure without in-
fection time have emerged. Two existing methods[8,2] attempt to learn influence
relationships between nodes from all fixed-length path trajectories or from ini-
tial and resulting infected node sets. However, the former requires obtaining all
fixed-length path trajectories, the latter requires prior knowledge of the number
of edges in the diffusion network. These are difficult to obtain in practice.

In order to address the above problems, we proposes a novel infection time in-
dependent network inference method called InDNI (An Infection Time Independent
Method for Diffusion Network Inference). InDNI takes final states of nodes (in-
fected or not) in different propagation processes as inputs, which is easier to
obtain than the exact infection time or infection sequences. During informa-
tion propagation, user pairs with follower relationships tend to exhibit similar
behaviors (infected or not infected at the same time). Therefore, the final infec-
tion state of a node can well reflect the influence relationship between nodes.
InDNI utilizes variational auto-encoders[4] to extract the behavioral character-
istics of nodes. Meanwhile, wasserstein distance[24] is utilized to measure the
similarity between node pairs and further infer the adjacent edge relationship
between nodes. Furthermore, to address the problem that nodes rarely involved
in propagation will be aggregated within the embedding space and be misjudged
as having adjacent edges, InDNI excludes node pairs with very low probability
of adjacent edges by examining the correlation of the infection mutual informa-
tion(IMI) metric [9] between nodes. In summary, the main contributions of this
paper are summarized as follows:

– We propose a novel diffusion network inference algorithm named InDNI.
Compared to existing algorithms, InDNI relies only on the final infection
status of nodes, which is easier to obtain in practice.

– An effective filtering strategy based on infection mutual information is pro-
posed for not only accelerating the prediction process but also reducing the
bias led by infrequent nodes.

– Experimental results on synthetic and real-world dataset demonstrates that
InDNI outperforms the state-of-the-art infection time independent models
while showing comparable performance over infection time based models.

2 Related Work

According to whether the infection time is utilized, diffusion network inference
can be divided into the following two categories: (1) The infection time-based
algorithm; (2) The infection time-independent algorithms.

The infection time-based algorithm. Most of the infection time-based network
inference algorithms are based on the following assumptions: nodes that are
sequentially infected within a time interval have influence relationships, and
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previously infected nodes are considered as potential parents of subsequently in-
fected nodes. Therefore, these methods rely on explicit temporal information for
each node. Representative algorithms are: InfoPath[21], NetINF[7], REFINE[13],
etc. Depending on the differences in the principles, this types of methods can be
subdivided into: the convex programming-based approaches, the submodularity-
based approaches, and the embedding-based approaches. Although the infection
time-based algorithm is effective in some scenarios to solve the network inference
problem, it is a very difficult task to obtain the data with the accurate infection
time during the propagation. This undoubtedly challenges the applicability of
the algorithm.

The infection time-independent algorithms. To solve the problem of time col-
lection difficulties, some works try to learn the influence relationships between
nodes from diffusion path traces (the Path approach[8]), based on lifting ef-
fects (the LIFT approach[2]) or the node infection sequence (the DeepINFER
approach[12]). The PATH approach requires obtaining all fixed-length path tra-
jectories. The LIFT approach requires a priori knowledge of the number of edges
in the diffusion network, otherwise it infers a fully connected graph. All these
methods have strong a priori assumptions that are not conducive to the ap-
plication of the algorithm. Subsequently, DeepINFER proposes to compare the
infection sequence context of a node with the textual context and learn the
node representation by Skip-Gram model[20]. It gets rid of the dependence on
infection time to a certain extent. However, due to the hysteresis of information
propagation, there is not necessarily a direct influence relationship between the
context node and the central node, which will make the model mistakenly believe
that there is a high probability of adjacent edges between the context node and
the central node.

3 Problem Statement

The diffusion network can be represented as a graph G = {V,E}, where V =
{v1, v2, ..., vn} refers to the set of n nodes, and E denotes the set of m edges
between nodes. In the diffusion network inference problem, the set of nodes is
given and the set of edges is unknown and needs to be inferred. In this paper,
we assume that the propagation result only contains the final infection state of
the node, not the infection time or sequence. Therefore, the formal definition of
our problem statement is given (Table 1 gives the main symbols in this paper):

Given: On the diffusion network G, given a set of node infection status results
C = {C1, C2, . . . , Ck} during k times of historical propagation. The element
Cl = {cl1, cl2, . . . , cln} is an n-dimensional vector (n is the number of nodes in G)
which records the final infection status of each node in the lth propagation, and
cli = {0, 1} (0 refers to not infected, 1 refers to infected).

Infer: The unknown edge set E of the diffusion network G.
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Table 1. A brief summary of notions.

Symbol Description

G A diffusion Network.
V,E The node set and edge set of network G.
n,m The number of nodes and edges of network G.
C The observed infection status of nodes in G during historical propagation.
X Node infection matrix extracted from C.

Spair The set of candidate node pairs, i.e., node pairs that may have adjacent edges.

4 InDNI Algorithm

From the perspective of graph representation learning, the basic idea of the
diffusion network inference is to learn the node representation according to the
result of propagation, and judge whether there is an edge based on the similarity
between nodes. Therefore, InDNI extracts the behavioral features of nodes in
the process of reconstructing the infection state of nodes with the help of VAE.
Then, InDNI describes the similarity between nodes through the Wasserstein
distance for diffusion network inference. Meanwhile, in order to solve the problem
of aggregation of nodes that are isolated or rarely involved in propagation in
the embedding space, InDNI introduces IMI metrics for preliminary filtering to
obtain candidate pairs of nodes that may have adjacent edges.

4.1 Node Representation Learning

Node initial features. Based on the assumption that adjacent nodes often
have similar behaviors in information propagation, the following definition of
the node infection matrix is given as input to the model:

Definition 1 (Node Infection Matrix). On a diffusion network G containing
n nodes, the set of node infection states C = {C1, C2, . . . , Ck} during k historical
propagation is given. Extracting the node infection matrix from C is defined as
X ∈ Rn×k. The i-th row and j-th column of the matrix X represent the infection
of node vi in the j-th propagation:

Xij =

{
1, if cji = 1

0, if cji = 0
(1)

The node infection matrix X only depends on the infection results of the prop-
agation, which represents the behavioral tendency of nodes in this group of
propagation.

Variational Autoencoder. InDNI maps node infection states to a low-dimensional
space through a Variational Autoencoder (VAE) containing multiple non-linear
layers, aiming to extract dense behavioral feature vectors of nodes from the
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node infection matrix X. VAE utilizes Gaussian distribution to describe the
probability distribution of node features, whose powerful information extraction
capability has been demonstrated in several fields such as graph representation
learning[24] and graph generation[14].

Loss Function. The loss function of VAE mainly consists of two parts: recon-
struction loss and distribution loss[4], as shown by the Eqs. 2. In the formula,
p(Z) =

∏
i p(zi) =

∏
i N (zi|0, I) is a Gaussian prior distribution of the latent

variable Z, and Q(Z|X,Φ) is the Encoder, Φ is the parameter of the Encoder,
P (X̂|Z,Θ) is the Decoder, Θ is the parameter of the Decoder, and KL refers to
the KL divergence.

L = EQ(Z|X,Φ)

[
logP (X̂|Z,Θ)

]
−KL [Q(Z|X,Φ)∥p(Z)] (2)

The reconstruction loss hopes that the features extracted by the Encoder can
restore the input X well. It is worth mentioning that the node infection matrix X
is usually sparse. In order to avoid the model from over-learning the sparse part,
inspired by existing work, in the reconstruction loss, we assign more penalties
to the loss caused by non-zero elements than the loss caused by zero elements.
So the reconstruction loss can be defined as:

EQ(Z|X,Φ)

[
logP (X̂|Z,Θ)

]
=

n∑
i=0

∥(Xi − X̂i)⊙ Pi∥22 = ∥(X − X̂)⊙ P∥2F (3)

where ⊙ denotes the Hadamard product, and the elements of row i and column
j of the weight matrix P are defined as follows:

Pij =

{
ρ, if Xj

i = 1

1, if Xj
i = 0

(4)

where ρ is the hyperparameter of the model, which is used to adjust the weight
of the reconstruction loss of non-zero elements. In the experimental part, the
effect of different ρ on the results is explored.

The distribution loss can be thought of as a regularizer. Its goal is to reconstruct
a meaningful output X even when the latent variable Z is sampled from a priori
distribution p(Z). We assume that the latent variable Z follows a Gaussian
distribution, as shown by the Eqs. 5.

KL [Q(Z|X,Φ)||p(Z)] = KL [N (µ(X), Σ(X))∥N (0, I)]

=
1

2
(Tr(Σ(X)) + µ(X)Tµ(X)− k + log(det(Σ(X))))

(5)

where k denotes the dimensionality of the distribution features, Tr is the trace
of the matrix, det is the determinant of the matrix, and the parameters µ and Σ
of the Gaussian distribution can be obtained by fitting a neural network while
Σ is constrained to be a diagonal matrix.
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4.2 Similarity Measure

After obtaining the node representation, a suitable distance metric is needed to
describe the similarity between different nodes. Extensive work[24] has demon-
strated that the Wasserstein distance is a good measure of the distance between
two distributions. It does not suffer from problems similar to the KL divergence
or JS divergence that give meaningless or constant results for two distributions
that do not overlap at all. This ensures that it can stably describe the similarity
between nodes. The qth Wasserstein distance between two probability distribu-
tions P1 and P2 is defined as :

Wq(P1, P2) = (inf E [d(X,Y )q])1/q (6)

where E[Z] denotes the expected value of a random variable Z and the infimum is
taken over all joint distributions of the random variables X and Y with marginals
P1 and P2 respectively.

However, the general form of Wasserstein distance is limited by the large com-
putational cost and it is difficult to apply it directly to the problem in this paper.
To reduce the computational cost, in this paper, the 2nd Wasserstein distance
(abbreviated as W2) has a closed form solution to speed up the computational
process since we use a Gaussian distribution as the node representation. In the
meanwhile, we focus on diagonal covariance matrices[6][22], i.e., Σ1Σ2 = Σ2Σ1.
Thus, Eqs. 6 can be simplified as Eqs. 7 [24]. The computational complexity of
W2 scales linearly with the embedding dimension.

W2(N (µ1, Σ1),N (µ2, Σ2)) = (∥µ1 − µ2∥22 + ∥Σ1/2
1 −Σ

1/2
2 ∥2F )1/2 (7)

4.3 Filtering candidate node pairs

There are often isolated nodes or nodes that rarely participate in the propagation
in the diffusion network. Since their infection status is basically all zeros, these
nodes cluster within the embedding space when projected onto the embedding
space via the VAE. Obviously, by the above approach alone, the algorithm would
naturally assume that there are adjacent edges between these nodes, which do
not actually exist. To solve the above problem, InDNI introduces the Infection-
MI metric for initial filtering to obtain the set of candidate node pairs for which
adjacent edges may exist.

Infection-MI. Based on the assumption that neighboring nodes tend to have
similar behaviors during information propagation, we argue that the higher the
behavioral correlation, the higher the probability of the existence of adjacent
edges. Inspired by the existing work[9], we introduce the Infection-MI metric
(abbreviated as IMI) based on mutual information to measure node behavioral
correlation.

IMI(vi, vj) = MI(vi = 1, vj = 1)−MI(vi = 1, vj = 0)−MI(vi = 0, vj = 1) (8)
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According to the above definition, when the behaviors of nodes vi and vj are
highly negatively correlated, i.e., the values of MI(vi = 1, vj = 0) or MI(vi =
0, vj = 1) is significantly large, IMI(vi, vj) tends to be negative. When the be-
havior of vi and vj tend to be independent, the values of MI(vi = 1, vj = 1),
MI(vi = 1, vj = 0) and MI(vi = 0, vj = 1) are very small and the value of IMI
is close to 0. When the behavior of A and B have a high correlation, IMI is a
relatively large positive value. Therefore, IMI can well reflect the correlation of
behaviors between nodes.

Kmeans-based Filtering Method. In diffusion networks, each node vi usu-
ally contains only a limited number of parents that tend to have a large positive
correlation with node vi. Except for a few nodes that have negative correla-
tion with vi, most of the nodes in the network have no influence relationship
on vi, which leads to a compact cluster with a mean value close to 0 for the
IMI metric. To avoid setting hyperparameters and to distinguish weak positive
correlation from positive correlation, we introduce a filtering method based on
Kmeans clustering[10] to filter out the set of node pairs Spair with possible ad-
jacent edges based on IMI, with the following procedure.

Step 1: Calculate the IMI value between each node in the network and remove
the node pairs in which the IMI value is negative.

Step 2: Executing the Kmeans algorithm for the remaining pairs of nodes (one-
dimensional clustering), where K = 2, fixing one of the cluster centers to 0
and initializing the other cluster center to the maximum of all IMI values,
iterating continuously until stability.

Step 3: The node pairs contained in clusters with non-zero cluster centers are
treated as the set of candidate node pairs, denoted as Spair, i.e., the node
pairs with possible adjacent edges.

Algorithm 1 The InDNI Algorithm
Input: The node set V , the node infection matrix X.
Output: The edge set E.
1: for i = 1 to n do
2: for j = i+ 1 to n do
3: Calculate IMI(vi, vj) by Eqs. 8.
4: end for
5: end for
6: Based on IMI, Spair is obtained by Kmeans filtering method.
7: The node infection matrix X is used as input and the node representation is ob-

tained by iteratively optimizing the VAE parameters according to Eqs. 2.
8: for (vi, vj) ∈ Spair do
9: Calculate W2(vi, vj) by Eqs. 7.

10: end for
11: By Eqs. 9, infer the edge set E.
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4.4 Network Inference

Once the representation of each node and the set of candidate node pairs Spair are
obtained, the next step is to infer the set of edges E of the diffusion network[12].
We believe that the distributional difference between node pairs with adjacent
edges should be smaller, and the distributional difference between node pairs
without adjacent edges should be larger. Therefore, we can infer whether there
is an edge by computing the similarity of candidate node pairs, which is expressed
formally as Eqs. 9.

E = {(u, v) : W2(u, v) ≤ τ, (u, v) ∈ Spair} (9)

Up to this point, all the steps have been clarified and the overall flow of InDNI
is summarized in Algorithm 1.

5 Experiments

5.1 Experimental Setup

Datasets. To comprehensively observe the capabilities of the InDNI algorithm,
we conduct experiments on different scenarios on synthetic and real datasets.
The basic statistics of each dataset are shown in Table 2.

Table 2. A brief description about datasets

Type Networks n m k

Synthetic datasets
Kronecker Random 512 1024 5000

Kronecker Hierarchical 512 1024 5000
Kronecker Core-Periphery 512 1024 5000

Real world datasets
Dolphin 62 318 1000
Polblogs 1490 33430 10000
Facebook 4039 88234 50000

We first consider the Kronecker model[16] to simulate a real-world diffu-
sion network, which can generate different network structure that approximates
the real-world scenario based on different parameter inputs. In this paper, we
consider the three most common network structures: Random[5] (parameter ma-
trix: [0.5,0.5; 0.5,0.5]), Hierarchical[3] ([0.9,0.1; 0.1,0.9]) and Core-periphery[17]
([0.9,0.5; 0.5,0.3]).

Although the synthetic model can generate the desired network structure by
controlling different parameters, which facilitates the in-depth analysis of the al-
gorithm performance. However, synthetic datasets are not really a substitute for
real-world propagation processes, which are often influenced by a large number of
external factors and cannot be really accurately described. Therefore, to explore
the capability of the algorithm in real-world scenarios, we conducted extensive
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experiments on real datasets as follows: (1)Dolphin:[19] A small undirected so-
cial network of frequent contact between 62 dolphins in a community near the
New Zealand Strait; (2) Polblogs:[1] A network of hyperlinks between blogs
about American politics recorded in 2005; (3) Facebook:[18] A social network
from Facebook that has anonymized user ids.

Baseline methods. Among the existing network inference algorithms, it is
mainly divided into infection time-based and infection time-independent net-
work inference algorithms. The accuracy of infection time-based inference al-
gorithms tends to be higher than that of infection time-independent inference
algorithms, because the former uses more information and requires higher qual-
ity of data. We selected the most representative algorithms of the two major
classes as the benchmark algorithms for our experiments, listed as InfoPath[21],
Netinf[7], REFINE[13], DeepINFER[12]. To evaluate the accuracy of InDNI in
diffusion network inference, we report the F1-score[9] as an evaluation metric.

5.2 Results and Discussion

Diffusion network inference. Following the above settings, we compare the
performance of the algorithms on six datasets, the results are presented in Table
3. As seen from the table, (1) the accuracy of infection time-based inference algo-
rithms tends to be higher than that of infection time-independent inference algo-
rithms, because the former uses more information and requires higher quality of
data. (2) InDNI outperforms DeepINFER on all datasets, while approaching the
infection time-based algorithm on some datasets, especially real-world datasets.
(3) Comparing the performance of algorithms on synthetic datasets, even with
the same network size, different network properties can lead to drastically dif-
ferent results.

Table 3. Diffusion network inference results (F1-score). (The first three methods are
infection time-based methods and the last two methods are infection time-independent
methods.)

Alg.
Datasets Random Hierarchical Core-periphery Dolphin Polblogs Facebook

REFINE 0.316 0.315 0.270 0.520 0.372 0.289
InfoPath 0.796 0.799 0.778 0.752 0.634 0.403
NetINF 0.852 0.929 0.740 0.794 0.683 0.427

DeepINFER 0.464 0.499 0.381 0.792 0.574 0.335

InDNI 0.586 0.547 0.469 0.811 0.611 0.394
+26.3% +17.4% +23.1% +2.39% +6.45% +17.6%

Sensitivity analysis experiments. In this subsection, we explore the effects of
the number of nodes, the number of edges, the number of the historical propaga-
tion and the hyperparameter ρ on the algorithm, respectively, as shown in Fig. 1.
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All experiments are performed on synthetic datasets. We control the Kronecker
model to generate Hierarchical networks with uniform network mechanisms but
with different parameters. From the figure we can observe that (1) The infection
time-independent algorithms are more sensitive to network size than the infec-
tion time-based algorithm. (2) Compared with the infection time-independent
algorithms, the infection time-based algorithm can obtain the set of potential
parent nodes through the node infection time, which helps them achieve bet-
ter results. (3) When the number of propagation is small, the statistical effect
of propagation cannot be fully reflected, and the results of each algorithm are
poorer under the influence of biased data. However, InDNI, NetINF and InfoPath
have lower requirements for the number of propagations, which is important for
practical applications. (4) The loss weight ρ avoids focusing too much on the zero
element, and the appropriate parameter make the model significantly improve
on each dataset.

(a) (b)

(c) (d)

Fig. 1. Sensitivity Analysis Experiments.(a)Effects of the number of nodes;(b)Effects
of the number of edges;(c)Effects of the number of propagation;(d)Effects of hyperpa-
rameter ρ.

Ablation experiment. To verify the effectiveness as well as the necessity of
each part of the algorithm, we explored the performance of co-occurrence, MI,
IMI, and InDNI without IMI versus InDNI, respectively, as shown in Fig. 2. From
which we can observe that (1) The experimental results of IMI, InDNI without
IMI and InDNI shows that filtering method, which plays an important role in
the overall performance of the algorithm, does solve the problem of aggregation
of isolated nodes in the embedding space. (2) The results of IMI are all better
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than MI, justifying the rationality and necessity of IMI. (3) The combination of
node representation and filtering methods can achieve better results.

Fig. 2. Ablation Experiment.

6 Conclusion and Future Work

In this paper, we propose an algorithm InDNI for diffusion network inference
from the final infection status of nodes only. Compared with existing algorithms,
InDNI does not depend on infection time or infection sequence and does not
have strong a priori assumptions. Experiments on a large number of synthetic
and real-world datasets demonstrate that InDNI outperforms other algorithms
that do not rely on infection time, and is able to approach the performance of
infection time based algorithms on some datasets.

In the future, we will subsequently consider data collection error detection
and complementary algorithms for more precise prediction. In addition, the
InDNI algorithm still has a gap with the infection time based algorithm. We
believe that the learning of node representation can be improved and will ex-
plore it in future work.

References

1. Adamic, L.A., Glance, N.: The political blogosphere and the 2004 us election:
divided they blog. In: Proceedings of the 3rd international workshop on Link dis-
covery. pp. 36–43 (2005) 5.1

2. Amin, K., Heidari, H., Kearns, M.: Learning from contagion (without timestamps).
In: International Conference on Machine Learning. pp. 1845–1853. PMLR (2014)
1, 2

3. Clauset, A., Moore, C., Newman, M.E.: Hierarchical structure and the prediction
of missing links in networks. Nature 453(7191), 98–101 (2008) 5.1

4. Doersch, C.: Tutorial on variational autoencoders. arXiv preprint arXiv:1606.05908
(2016) 1, 4.1

5. Erdos, P., Rényi, A., et al.: On the evolution of random graphs. Publ. Math. Inst.
Hung. Acad. Sci 5(1), 17–60 (1960) 5.1

6. Givens, C.R., Shortt, R.M.: A class of wasserstein metrics for probability distribu-
tions. Michigan Mathematical Journal 31(2), 231–240 (1984) 4.2

7. Gomez-Rodriguez, M., Leskovec, J., Krause, A.: Inferring networks of diffusion and
influence. ACM Transactions on Knowledge Discovery from Data (TKDD) 5(4),
1–37 (2012) 2, 5.1



12 Chen. et al.

8. Gripon, V., Rabbat, M.: Reconstructing a graph from path traces. In: 2013 IEEE
International Symposium on Information Theory. pp. 2488–2492. IEEE (2013) 1,
2

9. Han, K., Tian, Y., Zhang, Y., Han, L., Huang, H., Gao, Y.: Statistical estimation
of diffusion network topologies. In: 2020 IEEE 36th International Conference on
Data Engineering (ICDE). pp. 625–636. IEEE (2020) 1, 4.3, 5.1

10. Hartigan, J.A., Wong, M.A.: Algorithm as 136: A k-means clustering algorithm.
Journal of the royal statistical society. series c (applied statistics) 28(1), 100–108
(1979) 4.3

11. Huang, H., Yan, Q., Gan, T., Niu, D., Lu, W., Gao, Y.: Learning diffusions without
timestamps. In: Proceedings of the AAAI Conference on Artificial Intelligence.
vol. 33, pp. 582–589 (2019) 1

12. Kefato, N.Z., Montresor, A.: Deepinfer: Diffusion network inference through repre-
sentation learning. In: Proc. 13th Int. Workshop Mining Learn. Graphs. p. 5 (2017)
2, 4.4, 5.1

13. Kefato, Z.T., Sheikh, N., Montresor, A.: Refine: Representation learning from dif-
fusion events. In: International Conference on Machine Learning, Optimization,
and Data Science. pp. 141–153. Springer (2018) 2, 5.1

14. Kipf, T.N., Welling, M.: Variational graph auto-encoders. arXiv preprint
arXiv:1611.07308 (2016) 4.1

15. Kurashima, T., Iwata, T., Takaya, N., Sawada, H.: Probabilistic latent network
visualization: Inferring and embedding diffusion networks. In: Proceedings of the
20th ACM SIGKDD international conference on Knowledge discovery and data
mining. pp. 1236–1245 (2014) 1

16. Leskovec, J., Chakrabarti, D., Kleinberg, J., Faloutsos, C., Ghahramani, Z.: Kro-
necker graphs: an approach to modeling networks. Journal of Machine Learning
Research 11(2) (2010) 5.1

17. Leskovec, J., Lang, K.J., Dasgupta, A., Mahoney, M.W.: Statistical properties of
community structure in large social and information networks. In: Proceedings of
the 17th international conference on World Wide Web. pp. 695–704 (2008) 5.1

18. Leskovec, J., Mcauley, J.: Learning to discover social circles in ego networks. Ad-
vances in neural information processing systems 25 (2012) 5.1

19. Lusseau, D., Schneider, K., Boisseau, O.J., Haase, P., Slooten, E., Dawson, S.M.:
The bottlenose dolphin community of doubtful sound features a large proportion
of long-lasting associations. Behavioral Ecology and Sociobiology 54(4), 396–405
(2003) 5.1

20. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed repre-
sentations of words and phrases and their compositionality. Advances in neural
information processing systems 26 (2013) 2

21. Rodriguez, M.G., Leskovec, J., Balduzzi, D., Schölkopf, B.: Uncovering the struc-
ture and temporal dynamics of information propagation. Network Science 2(1),
26–65 (2014) 2, 5.1

22. Wang, H., Banerjee, A.: Bregman alternating direction method of multipliers. In:
Advances in Neural Information Processing Systems. vol. 27. Curran Associates,
Inc. (2014) 4.2

23. Xia, Y., Chen, T.H.Y., Kivelä, M.: Applicability of multilayer diffusion network
inference to social media data. arXiv preprint arXiv:2111.06235 (2021) 1

24. Zhu, D., Cui, P., Wang, D., Zhu, W.: Deep variational network embedding in
wasserstein space. In: Proceedings of the 24th ACM SIGKDD international con-
ference on knowledge discovery & data mining. pp. 2827–2836 (2018) 1, 4.1, 4.2,
4.2


	InDNI: An Infection Time Independent Method for Diffusion Network Inference

